14 research outputs found

    Climate, land use and vegetation trends: Implication of land use change and climate change on northwestern drylands of Ethiopia

    Get PDF
    Land use / land cover (LULC) change assessment is getting more consideration by global environmental change studies as land use change is exposing dryland environments for transitions and higher rates of resource depletion. The semiarid regions of northwestern Ethiopia are not different as land use transition is the major problem of the region. However, there is no satisfactory study to quantify the change process of the region up to now. Hence, spatiotemporal change analysis is vital for understanding and identification of major threats and solicit solutions for sustainable management of the ecosystem. LULC change studies focus on understanding the patterns, processes and dynamics of land use transitions and driving forces of change. The change processes in dryland ecosystems can be either seasonal, gradual or abrupt changes of random or systematic change processes that result in a pattern or permanent transition in land use. Identification of these processes of change and their type supports adoption of monitoring options and indicate possible measures to be taken to safeguard this dynamic ecosystem. This study examines the spatiotemporal patterns of LULC change, temporal trends in climate variables and the insights of the communities on change patterns of ecosystems. Landsat imagery, MODIS NDVI, CRU temperature, TAMSAT rainfall and socio-ecological field data were used in order to identify change processes. LULC transformation was monitored using support vector machine (SVM) algorithm. A cross-tabulation matrix assessment was implemented in order to assess the total change of land use categories based on net change and swap change. In addition, the pattern of change was identified based on expected gain and loss under a random process of gain and loss, respectively. Breaks For Additive Seasonal and Trend (BFAST) analysis was employed for determining the time, direction and magnitude of seasonal, abrupt and trend changes within the time series datasets. In addition, Man Kendall test statistic and Sen’s slope estimator were used for assessing long term trends on detrended time series data components. Distributed lag (DL) model was also adopted in order to determine the time lag response of vegetation to the current and past rainfall distribution. Over the study period of 1972- 2014, there is a significant change in LULC as evidenced by a significant increase in size of cropland of about 53% and a net loss of over 61% of woodland area. The period 2000-2014 has shown a sharp increase of cropland and a sharp decline of woodland areas. Proximate causes include agricultural expansion and excessive wood harvesting; and underlying causes of demographic factor, economic factors and policy contributed the most to an overuse of existing natural resources. In both the observed and expected proportion of random process of change and of systematic changes, woodland has shown the highest loss compared to other land use types. The observed transition and expected transition under random process of gain of woodland to cropland is 1.7%, implies that cropland systematically gains to replace woodland. The comparison of the difference between observed and expected loss under random process of loss also showed that when woodland loses cropland systematically replaces it. The assessment of magnitude and time of breakpoints on climate data and NDVI showed different results. Accordingly, NDVI analysis demonstrated the existence of breakpoints that are statistically significant on the seasonal and long term trends. There is a positive trend, but no breakpoints on the long term precipitation data during the study period. The maximum temperature also showed a positive trend with two breakpoints which are not statistically significant. On the other hand, there is no seasonal and trend breakpoints in minimum temperature, though there is an overall positive trend along the study period. The Man-Kendall test statistic for long term average Tmin and Tmax showed significant variation where as there is no significant trend within the long term rainfall distribution. The lag regression between NDVI and precipitation indicated a lag of up to forty days. This proves that the vegetation growth in this area is not primarily determined by the current precipitation rather with the previous forty days rainfall. The combined analysis showed declining vegetation productivity and a loss of vegetation cover that contributed for an easy movement of dust clouds during the dry period of the year. This affects the land condition of the region, resulting in long term degradation of the environmen

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. LANCET. 2016;388(10053):1659-1724.Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57.8% (95% CI 56.6-58.8) of global deaths and 41.2% (39.8-42.8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211.8 million [192.7 million to 231.1 million] global DALYs), smoking (148.6 million [134.2 million to 163.1 million]), high fasting plasma glucose (143.1 million [125.1 million to 163.5 million]), high BMI (120.1 million [83.8 million to 158.4 million]), childhood undernutrition (113.3 million [103.9 million to 123.4 million]), ambient particulate matter (103.1 million [90.8 million to 115.1 million]), high total cholesterol (88.7 million [74.6 million to 105.7 million]), household air pollution (85.6 million [66.7 million to 106.1 million]), alcohol use (85.0 million [77.2 million to 93.0 million]), and diets high in sodium (83.0 million [49.3 million to 127.5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Copyright (C) The Author(s). Published by Elsevier Ltd

    Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Climate, land use and vegetation trends: Implication of land use change and climate change on northwestern drylands of Ethiopia

    Get PDF
    Land use / land cover (LULC) change assessment is getting more consideration by global environmental change studies as land use change is exposing dryland environments for transitions and higher rates of resource depletion. The semiarid regions of northwestern Ethiopia are not different as land use transition is the major problem of the region. However, there is no satisfactory study to quantify the change process of the region up to now. Hence, spatiotemporal change analysis is vital for understanding and identification of major threats and solicit solutions for sustainable management of the ecosystem. LULC change studies focus on understanding the patterns, processes and dynamics of land use transitions and driving forces of change. The change processes in dryland ecosystems can be either seasonal, gradual or abrupt changes of random or systematic change processes that result in a pattern or permanent transition in land use. Identification of these processes of change and their type supports adoption of monitoring options and indicate possible measures to be taken to safeguard this dynamic ecosystem. This study examines the spatiotemporal patterns of LULC change, temporal trends in climate variables and the insights of the communities on change patterns of ecosystems. Landsat imagery, MODIS NDVI, CRU temperature, TAMSAT rainfall and socio-ecological field data were used in order to identify change processes. LULC transformation was monitored using support vector machine (SVM) algorithm. A cross-tabulation matrix assessment was implemented in order to assess the total change of land use categories based on net change and swap change. In addition, the pattern of change was identified based on expected gain and loss under a random process of gain and loss, respectively. Breaks For Additive Seasonal and Trend (BFAST) analysis was employed for determining the time, direction and magnitude of seasonal, abrupt and trend changes within the time series datasets. In addition, Man Kendall test statistic and Sen’s slope estimator were used for assessing long term trends on detrended time series data components. Distributed lag (DL) model was also adopted in order to determine the time lag response of vegetation to the current and past rainfall distribution. Over the study period of 1972- 2014, there is a significant change in LULC as evidenced by a significant increase in size of cropland of about 53% and a net loss of over 61% of woodland area. The period 2000-2014 has shown a sharp increase of cropland and a sharp decline of woodland areas. Proximate causes include agricultural expansion and excessive wood harvesting; and underlying causes of demographic factor, economic factors and policy contributed the most to an overuse of existing natural resources. In both the observed and expected proportion of random process of change and of systematic changes, woodland has shown the highest loss compared to other land use types. The observed transition and expected transition under random process of gain of woodland to cropland is 1.7%, implies that cropland systematically gains to replace woodland. The comparison of the difference between observed and expected loss under random process of loss also showed that when woodland loses cropland systematically replaces it. The assessment of magnitude and time of breakpoints on climate data and NDVI showed different results. Accordingly, NDVI analysis demonstrated the existence of breakpoints that are statistically significant on the seasonal and long term trends. There is a positive trend, but no breakpoints on the long term precipitation data during the study period. The maximum temperature also showed a positive trend with two breakpoints which are not statistically significant. On the other hand, there is no seasonal and trend breakpoints in minimum temperature, though there is an overall positive trend along the study period. The Man-Kendall test statistic for long term average Tmin and Tmax showed significant variation where as there is no significant trend within the long term rainfall distribution. The lag regression between NDVI and precipitation indicated a lag of up to forty days. This proves that the vegetation growth in this area is not primarily determined by the current precipitation rather with the previous forty days rainfall. The combined analysis showed declining vegetation productivity and a loss of vegetation cover that contributed for an easy movement of dust clouds during the dry period of the year. This affects the land condition of the region, resulting in long term degradation of the environmen

    Climate, land use and vegetation trends: Implication of land use change and climate change on northwestern drylands of Ethiopia

    No full text
    Land use / land cover (LULC) change assessment is getting more consideration by global environmental change studies as land use change is exposing dryland environments for transitions and higher rates of resource depletion. The semiarid regions of northwestern Ethiopia are not different as land use transition is the major problem of the region. However, there is no satisfactory study to quantify the change process of the region up to now. Hence, spatiotemporal change analysis is vital for understanding and identification of major threats and solicit solutions for sustainable management of the ecosystem. LULC change studies focus on understanding the patterns, processes and dynamics of land use transitions and driving forces of change. The change processes in dryland ecosystems can be either seasonal, gradual or abrupt changes of random or systematic change processes that result in a pattern or permanent transition in land use. Identification of these processes of change and their type supports adoption of monitoring options and indicate possible measures to be taken to safeguard this dynamic ecosystem. This study examines the spatiotemporal patterns of LULC change, temporal trends in climate variables and the insights of the communities on change patterns of ecosystems. Landsat imagery, MODIS NDVI, CRU temperature, TAMSAT rainfall and socio-ecological field data were used in order to identify change processes. LULC transformation was monitored using support vector machine (SVM) algorithm. A cross-tabulation matrix assessment was implemented in order to assess the total change of land use categories based on net change and swap change. In addition, the pattern of change was identified based on expected gain and loss under a random process of gain and loss, respectively. Breaks For Additive Seasonal and Trend (BFAST) analysis was employed for determining the time, direction and magnitude of seasonal, abrupt and trend changes within the time series datasets. In addition, Man Kendall test statistic and Sen’s slope estimator were used for assessing long term trends on detrended time series data components. Distributed lag (DL) model was also adopted in order to determine the time lag response of vegetation to the current and past rainfall distribution. Over the study period of 1972- 2014, there is a significant change in LULC as evidenced by a significant increase in size of cropland of about 53% and a net loss of over 61% of woodland area. The period 2000-2014 has shown a sharp increase of cropland and a sharp decline of woodland areas. Proximate causes include agricultural expansion and excessive wood harvesting; and underlying causes of demographic factor, economic factors and policy contributed the most to an overuse of existing natural resources. In both the observed and expected proportion of random process of change and of systematic changes, woodland has shown the highest loss compared to other land use types. The observed transition and expected transition under random process of gain of woodland to cropland is 1.7%, implies that cropland systematically gains to replace woodland. The comparison of the difference between observed and expected loss under random process of loss also showed that when woodland loses cropland systematically replaces it. The assessment of magnitude and time of breakpoints on climate data and NDVI showed different results. Accordingly, NDVI analysis demonstrated the existence of breakpoints that are statistically significant on the seasonal and long term trends. There is a positive trend, but no breakpoints on the long term precipitation data during the study period. The maximum temperature also showed a positive trend with two breakpoints which are not statistically significant. On the other hand, there is no seasonal and trend breakpoints in minimum temperature, though there is an overall positive trend along the study period. The Man-Kendall test statistic for long term average Tmin and Tmax showed significant variation where as there is no significant trend within the long term rainfall distribution. The lag regression between NDVI and precipitation indicated a lag of up to forty days. This proves that the vegetation growth in this area is not primarily determined by the current precipitation rather with the previous forty days rainfall. The combined analysis showed declining vegetation productivity and a loss of vegetation cover that contributed for an easy movement of dust clouds during the dry period of the year. This affects the land condition of the region, resulting in long term degradation of the environmen

    Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets

    Get PDF
    Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA) approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS) and end of season (EOS) was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0) and a significant decrease in other greenness trend maps (amplitude 1 and phase 1) was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0) was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1) was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities

    Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets

    No full text
    Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA) approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS) and end of season (EOS) was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0) and a significant decrease in other greenness trend maps (amplitude 1 and phase 1) was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0) was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1) was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities

    Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015.

    Get PDF
    BACKGROUND: Established in 2000, Millennium Development Goal 4 (MDG4) catalysed extraordinary political, financial, and social commitments to reduce under-5 mortality by two-thirds between 1990 and 2015. At the country level, the pace of progress in improving child survival has varied markedly, highlighting a crucial need to further examine potential drivers of accelerated or slowed decreases in child mortality. The Global Burden of Disease 2015 Study (GBD 2015) provides an analytical framework to comprehensively assess these trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time. METHODS: Drawing from analytical approaches developed and refined in previous iterations of the GBD study, we generated updated estimates of child mortality by age group (neonatal, post-neonatal, ages 1-4 years, and under 5) for 195 countries and territories and selected subnational geographies, from 1980-2015. We also estimated numbers and rates of stillbirths for these geographies and years. Gaussian process regression with data source adjustments for sampling and non-sampling bias was applied to synthesise input data for under-5 mortality for each geography. Age-specific mortality estimates were generated through a two-stage age-sex splitting process, and stillbirth estimates were produced with a mixed-effects model, which accounted for variable stillbirth definitions and data source-specific biases. For GBD 2015, we did a series of novel analyses to systematically quantify the drivers of trends in child mortality across geographies. First, we assessed observed and expected levels and annualised rates of decrease for under-5 mortality and stillbirths as they related to the Soci-demographic Index (SDI). Second, we examined the ratio of recorded and expected levels of child mortality, on the basis of SDI, across geographies, as well as differences in recorded and expected annualised rates of change for under-5 mortality. Third, we analysed levels and cause compositions of under-5 mortality, across time and geographies, as they related to rising SDI. Finally, we decomposed the changes in under-5 mortality to changes in SDI at the global level, as well as changes in leading causes of under-5 deaths for countries and territories. We documented each step of the GBD 2015 child mortality estimation process, as well as data sources, in accordance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). FINDINGS: Globally, 5·8 million (95% uncertainty interval [UI] 5·7-6·0) children younger than 5 years died in 2015, representing a 52·0% (95% UI 50·7-53·3) decrease in the number of under-5 deaths since 1990. Neonatal deaths and stillbirths fell at a slower pace since 1990, decreasing by 42·4% (41·3-43·6) to 2·6 million (2·6-2·7) neonatal deaths and 47·0% (35·1-57·0) to 2·1 million (1·8-2·5) stillbirths in 2015. Between 1990 and 2015, global under-5 mortality decreased at an annualised rate of decrease of 3·0% (2·6-3·3), falling short of the 4·4% annualised rate of decrease required to achieve MDG4. During this time, 58 countries met or exceeded the pace of progress required to meet MDG4. Between 2000, the year MDG4 was formally enacted, and 2015, 28 additional countries that did not achieve the 4·4% rate of decrease from 1990 met the MDG4 pace of decrease. However, absolute levels of under-5 mortality remained high in many countries, with 11 countries still recording rates exceeding 100 per 1000 livebirths in 2015. Marked decreases in under-5 deaths due to a number of communicable diseases, including lower respiratory infections, diarrhoeal diseases, measles, and malaria, accounted for much of the progress in lowering overall under-5 mortality in low-income countries. Compared with gains achieved for infectious diseases and nutritional deficiencies, the persisting toll of neonatal conditions and congenital anomalies on child survival became evident, especially in low-income and low-middle-income countries. We found sizeable heterogeneities in comparing observed and expected rates of under-5 mortality, as well as differences in observed and expected rates of change for under-5 mortality. At the global level, we recorded a divergence in observed and expected levels of under-5 mortality starting in 2000, with the observed trend falling much faster than what was expected based on SDI through 2015. Between 2000 and 2015, the world recorded 10·3 million fewer under-5 deaths than expected on the basis of improving SDI alone. INTERPRETATION: Gains in child survival have been large, widespread, and in many places in the world, faster than what was anticipated based on improving levels of development. Yet some countries, particularly in sub-Saharan Africa, still had high rates of under-5 mortality in 2015. Unless these countries are able to accelerate reductions in child deaths at an extraordinary pace, their achievement of proposed SDG targets is unlikely. Improving the evidence base on drivers that might hasten the pace of progress for child survival, ranging from cost-effective intervention packages to innovative financing mechanisms, is vital to charting the pathways for ultimately ending preventable child deaths by 2030. FUNDING: Bill & Melinda Gates Foundation
    corecore